Model Convergence Analysis

1 minute read

Published:

A specific inference concerning the convergence of Federated learning.

Optimization objective

\[x^*=\min f(x), \quad s.t. \Vert x\Vert\]

General convergence analysis

Given the constraint is not convex, it might be hard to address this problem directly.

Convex and smooth function without constraints

Define the loss function as L-smooth:

\[\Vert\nabla f(x)-\nabla f(y)\Vert\leq L\Vert x-y\Vert^2\]

Then, we can infer the following Property. ([[Difference about lemmas, theorem, proposition, corollary]])

Property 1 Inferred from L-smooth:

\[f(x)-f(y) \leq \nabla f(x)^{\top}(x-y)-\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^2\]

Convergence Analysis of the L-smooth convex optimization problem

The main target of convergence analysis is to prove $x^{t+1}$ is closer to the optimal $x^*$ than $x^t$. Thus, we can use Eucidean distance in gradient descent optimization solver to measure the proximity as:

\[\begin{aligned} \left\|x^{t+1}-x^*\right\|^2&=\left\|x^t-\eta \nabla f\left(x^t\right)-x^*\right\|^2 \\ &=\left\|x^t-x^*\right\|^2-2 \eta \nabla f\left(x^t\right)^{\top}\left(x^t-x^*\right)+\eta^2\left\|\nabla f\left(x^t\right)\right\|^2 \end{aligned}\]

Prove the convergence

We can infer that \(0\leq f(x^t)-f(x^*)\leq \nabla f(x^t)^{\top}(x^t-x^*)-\frac{1}{2 L}\|\nabla f(x^t)-\nabla f(x^**)\|^2\) Then: \(\nabla f(x^t)^{\top}(x^t-x^*)\geq\frac{1}{2 L}\|\nabla f(x^t)-\nabla f(x^**)\|^2\)

From ![[Model concergence analysis#^a1itzw]]we can obtain \(\begin{aligned} \left\|x^{t+1}-x^*\right\|^2 &=\left\|x^t-x^*\right\|^2-2 \eta \nabla f\left(x^t\right)^{\top}\left(x^t-x^*\right)+\eta^2\left\|\nabla f\left(x^t\right)\right\|^2 \\ &\leq \Vert x^t-x^*\Vert^2 -\frac{\eta}{L}\Vert\nabla f(x^t)\Vert^2+\eta^2\left\|\nabla f\left(x^t\right)\right\|^2\\ & = \Vert x^t-x^*\Vert^2 -\eta\left(\frac{1}{L}-\eta\right)\left\|\nabla f\left(x^t\right)\right\|^2 \end{aligned}\)

Therefore, if the $\frac{1}{L}> \eta$ , we can safely assert that \(\left\|x^{t+1}-x^*\right\|^2 \leq\left\|x^t-x^*\right\|^2\)

which proves the convergence.

This is a convex optimization with no constraint case. More detail about the other cases is avaible at Convergence Analysis - 知乎 (zhihu.com)

Also, the convergence rate analysis is not included, including the O,Omega and Pi analysis are out of scope in this blog. However, it should be specified in the future blogs.